
Measuring Fuzzers
A Summer With Industry

Who

Summer With
Industry

@

Disclaimer
The views expressed in this talk are
those of the speaker and do not
reflect the official policy or position
of the Army Cyber Institute, the
Department of the Army, the
Department of Defense or the United
States Government...

What'
s a

Lop?

Own T
he

bug-o-rama

tro
phy c

ase

Afl
is

Runni
ng

.

I t
hink

?

Starting Point

A Question… A Journey...

Where do fuzzers
spend their time?

The Story
Fuzzers, are highly effective and heavily
researched

But, there is still a lot of art and intuition

So, we measure

“assessed the experimental evaluations carried out by 32 fuzzing
papers. We found problems in every evaluation we considered.”

- Evaluating Fuzz Testing , Klees, et al.

The Landscape
The Art, Science,
and Engineering of
Fuzzing: A Survey
Manes, et al.

coverage
guided

 mutational
fuzzers

The BackStory

fuzzer

tests a program on many inputs

The BackStory

mutational fuzzer

produce inputs by modify existing seed
(corpus)

The BackStory

coverage guided
 mutational fuzzer

instrument the program to inform
selection/mutation

In the wild: afl

The "sales pitch"

- It is fast.
- It’s rock solid.
- No tinkering required.

$./afl-fuzz -i testcase_dir -o findings_dir ./program

http://lcamtuf.coredump.cx/afl/

In the Wild: libfuzzer

// fuzz_target.cc
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

DoSomethingInterestingWithMyAPI(Data, Size);
return 0;

}

“LibFuzzer is an in-process,
coverage-guided, evolutionary

fuzzing engine.”

https://llvm.org/docs/LibFuzzer.html

The Ivory Tower
"Designing New Operating
Primitives to Improve Fuzzing
Performance"

"Full-speed Fuzzing: Reducing
Fuzzing Overhead through
Coverage-guided Tracing"

"Coverage-based Greybox
Fuzzing as Markov Chain"

"VUzzer: Application-aware
Evolutionary Fuzzing"

parallel fuzzing + better os
(fork, fs, shared log)

UnTracer =
afl + lighter instrumentation

AFLFast =
afl + better selection

+ control and data-flow

Target Matters
“fuzzing performance may vary with the target program, so it is
important to evaluate on a diverse, representative benchmark

suite”

- Evaluating Fuzz Testing , Klees, et al.

Synthetic Bugs in Real Programs

Unknown Bugs in Real Programs

Real Bugs in Real Programs

Of Bugs and Baselines

“recently published results on the
LAVA-M synthetic bug dataset are
exciting. However, [...] we need to be
cautious in our evaluations and not
rely too much on getting a high score
on a single benchmark”
- Brendan Dolan-Gavitt @moyix

Synthetic Bugs
LAVA:
Large-scale
Automated
Vulnerability
Addition

https://github.com/panda-re/lava

http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.htmlcomparison!

Unknown Bugs

https://github.com/google/oss-fuzz

OSS-Fuzz: Continuous Fuzzing for
Open Source Software

+200 fuzz ready
targets
(libfuzzer, afl)

standardized
configuration and
build process

Scale. speed + coverage!

Real Bugs

https://github.com/google/fuzzer-test-suite

Fuzzer Test Suite

“a set of fuzzing benchmarks derived from
real-life libraries that have interesting bugs,

hard-to-find code paths, or other challenges for
bug finding”

~20 validated programs
known vulnerabilities, reproducers, and seeds

ground truth!

How to Time?

“XRay is a function call tracing system which combines
compiler-inserted instrumentation points and a runtime
library that can dynamically enable and disable the
instrumentation”

LLVM XRay

https://llvm.org/docs/XRay.html

Let’s Put it all together
experiment.yml

options:
engine: [afl, libfuzzer]
asan: [yes, no]

targets:
- harfbuzz
- json

$ python helper.py ./experiment.yml build_experiment

Where do fuzzers spend
their time?

✔ Fuzzers (afl, libfuzzer)

✔ Targets (lava, oss-fuzz, fuzzer-test-suite)

✔ Timing (llvm XRay)

✔ Automation (“fuzz ready” containers)

◽ Go!

REport Card

Thank you!

https://gitlab.com/royragsdale/fuzzing-measurement/

Fuzzers are great.

Still a lot of art.

Let’s measure.

