MEASURING FUZZERS

A SUMMER WITH INDUSTRY
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A QUESTION... A JOURNEY...

Where do fuzzers
spend their time?

o
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THE STORY

Fuzzers, are highly effective and heavily
researched

But, there is still a lot of art and intuition

So, we measure

‘assessed the experimental evaluations carried out by 32 fuzzing
papers. We found problems in every evaluation we considered.”

- Evaluating Fuzz Testing , Klees, et al.
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THE BACKSTORY

fuzzer

tests a program on many inputs



THE BACKSTORY

mutational fuzzer

produce inputs by modify existing seed
(corpus)



THE BACKSTORY

coverage guided
mutational fuzzer

instrument the program to inform
selection/mutation



IN THE WILD: AFL
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process timing —M8M8M ————————————————————— overall results
run time : 0 days, O hrs, 4 min, 43 sec cycles done : 0

Tast new path : 0 days, 0 hrs, 0 min, 26 sec total paths : 195
last uniq crash : none seen yet uniq crashes : 0
Tast uniq hang : 0 days, O hrs, 1 min, 51 sec uniq hangs : 1

— cycle progress —— ———————————— map coverage —
now processing : 38 (19.49%) map density : 1217 (7.43%)
paths timed out : 0 (0.00%) count coverage : 2.55 bits/tuple
— stage progress ——————————+— findings in depth
now trying : interest 32/8 favored paths : 128 (65.64%)
stage execs : 0/9990 (0.00%) new edges on : 85 (43.59%)
total execs : 654k total crashes : 0 (0 unique)
exec speed : 2306/sec total hangs : 1 (1 unique)
- fuzzing strategy yields - path geometry
bit flips 88/14.4k, 6/14.4k, 6/14.4k levels : 3
byte flips : 0/1804, 0/1786 1/1750 pending : 178
arithmetics : 31/126k. 3/4S.Gk. 1/17.8k pend fav : 114
known ints : 1/15.8k, 4/65.8k, 6/78.2k imported :
havoc : 34/254k, 0/0 variable :
trim : 2876 B/931 (61.45% gain) latent

$ ./afl-fuzz -i testcase_dir -o findings_dir ./program

- Itis fast.
- It’s rock solid.
- No tinkering required.

http://Icamtuf.coredump.cx/afl/



IN THE WILD: LIBFUZZER

// fuzz_target.cc
extern "C" int LLVMFuzzerTestOneInput(const uint8 t *Data, size t Size) {

DoSomethingInterestingWithMyAPI(Data, Size);
return O;

“LibFuzzer is an in-process,
coverage-guided, evolutionary
fuzzing engine.”

https://llvm.org/docs/LibFuzzer.html



THE IVORY TOWER

"Designing New Operating parallel fuzzing + better os
Primitives to Improve Fuzzing (fork, fs, shared log)
Performance”

"Full-speed Fuzzing: Reducing Unlracer =
Fuzzing Overhead through afl + lighter instrumentation
Coverage-guided Tracing"

"Coverage-based Greybox AFLFast =
Fuzzing as Markov Chain" afl + better selection
"VUzzer: Application-aware + control and data-flow

Evolutionary Fuzzing”



TARGET MATTERS

“fuzzing performance may vary with the target program, so it is
important to evaluate on a diverse, representative benchmark
suite”

- Evaluating Fuzz Testing , Klees, et al.

Synthetic Bugs in Real Programs
Unknown Bugs in Real Programs

Real Bugs in Real Programs



SYNTHETIC BUGS

LAVA:
Large-scale :
9 Of Bugs and Baselines
Automated
Vulnerabil ity “recently published results on the
Addition LAVA-M synthetic bug dataset are
exciting. However, [...] we need to be
cautious Iin our evaluations and not
G\:/ o rely too much on getting a high score
5 L AVA on a single benchmark”

- Brendan Dolan-Gavitt @moyix

https://github.com/panda-re/lava

http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html



0SS-Fuzz: Continuous Fuzzing for
Open Source Software

+200 fuzz ready

e targets
google/oss-fuzz n ins.io GCS bucket I. f fI
O 3 o A T (libfuzzer, afl)
— ) : —— ClusterFuzz
)
1. Write fuzzers T
2. Commit build -
| e standardized
8. Fix bugs \ // )
i L o CONFiguration and
Issue trac ker (monorail)

build process

https://github.com/google/oss-fuzz



REAL BUGS

Fuzzer Test Suite

“a set of fuzzing benchmarks derived from
real-life libraries that have interesting bugs,
hard-to-find code paths, or other challenges for
bug finding”

~20 validated programs
known vulnerabillities, reproducers, and seeds

https://github.com/google/fuzzer-test-suite



HOW TO TIME?

LLVM XRa
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main (Did Not Finish)
fuzz_one
common_fuzz_stuff common_fuzz_stuff common_fuzz_stuff
run_target wii... run_target wri... run_target show_stats

“XRay is a function call tracing system which combines
compiler-inserted instrumentation points and a runtime
library that can dynamically enable and disable the
instrumentation”

common_fuzz_stuff
fuzz_one

thread 13301

https://llvm.org/docs/XRay.html



LET'S PUT IT ALL TOGETHER

# experiment.yml
options:
engine: [afl, libfuzzer]
asan: [yes, no]
targets:
- harfbuzz
- json

$ python helper.py ./experiment.yml build experiment

Prep Project Artifact Runner Push

Q (v - Q



REPORT CARD

Where do fuzzers spend
their time?

Fuzzers (afl, libfuzzer)
Targets (lava, oss-fuzz, fuzzer-test-suite)
Timing (Ilvm XRay)

Automation (“fuzz ready” containers)



THANK YOU!

Fuzzers are great.
Still a lot of art.

Let’s measure.

https://gitlab.com/royragsdale/fuzzing-measurement/



