MEASURING FUZZERS

A SUMMER WITH INDUSTRY

s

Summer With
Industry

@

All-Army
yberStakes

DISCLAIMER

process timing
run time

last uniq crash
Tast uniqg hang

— cycle progress
now processing
paths timed out
— stage progress

: 0 days,
last new path :

STARTING POINT

american fuzzy lop 0.47b (readpng)

0 days,
none seen yet

: 0 days, O hrs,

38 (19.49%)
0 (0.00%)

0 hrs,
0 hrs,

overall results
cycles done : 0
total paths : 195
uniq crashes : 0
uniq hangs : 1

4 min, 43 sec
0 min, 26 sec

1 min, 51 sec
— map coverage —
map density : 1217 (7.43%)
count coverage : 2.55 bits/tuple
— findings in depth

now trying
stage execs
total execs
exec speed

: interest 32/8
: 0/9990 (0.00%)
: 654k

: 2306/sec

favored paths

total crashes
total hangs

- fuzzing strategy yields - —

bit flips
byte flips
arithmetics
known ints
havoc

trim :

88/14.4k, 6/14.4k, 6/14.4k

: 0/1804, 0/1786 1/1750

31/126k, 3/45.6k, 1/17.8k

- 1/15.8k. 4/65.8k. 6/78.2k

34/254k, 0/0
2876 B/931 (61.45% gain)

new edges on :
- 0 (0 unique)

128 (65.64%)
85 (43.59%)

1 (1 unique)

- path geometryr
levels : 3
pending : 178
pend fav : 114
imported :
variable
latent

A QUESTION... A JOURNEY...

Where do fuzzers
spend their time?

o
WHAT - -Jid-ON-{\
SUeA - VASATION

THE STORY

Fuzzers, are highly effective and heavily
researched

But, there is still a lot of art and intuition

So, we measure

‘assessed the experimental evaluations carried out by 32 fuzzing
papers. We found problems in every evaluation we considered.”

- Evaluating Fuzz Testing , Klees, et al.

THE LANDSCAPE

k)
- &K PROTOS &@{120]
e Art, Science B | ===
4 4
2005
[] L
GPFE 1)
and Engineering of — -
(Fr o) Aicoetc 8 214
2006 “
" Sidewinder [78]
Fuzzing: A Surve e
[] Sulley [16] SAGE & [87], [88], [90]
—
2me [ZFuzz @ [40] }~
Fuzzbox [207] {AtomFuzzer @[169]) (KLEE @48) }——
anes, et al. s
o0 ref_fuzz [234]
.
i adIookF —{BuzzFuzz B [84] }—
—+{DeadiockFuzzer @ 116]) wzFuz B A
2010 :(i‘j,“"“ CIRED)
.
Un—+{AssetFuzzer @[131]) {honggfuzz [204]}+—
aintScope & [219)]
2011
\ FuzzBALL @ (27], [147], [48]
kb-Anonymity & [43]
2012
Doupé ef al. & (73]
L—{(MagicFuzzer @ [47]] (Mamba & 117]}-— Mahmood et al. & [146]
Householder & [107], [106] Web
-
Trinity [115)
(AFL [231]} Dowser & [97]
— orangfuzz [188])
2014
| (KameleonFuzz @ [74]) (Rebert ef al. @ [177]}—
TFuzz B(114] (vorzo])
Dew: al. 7
A owey et al. & (69], [70]
PULSAR & [85] L~{Choronzon @ 194]) (CibFuzzer [7]) (GRT @145])
tisfuzzer [124] (SymFuzz @ [52] }+—— (peri_fuzzer @ [221]) Dharma (3] go-fuzz [215] e e MutaGen & [123])
lifuzzer [198] (syzkaller [216]]
u Ruiter ot al. 8 [180] CLsmih & [140] (Narada @ 11817
2016
UickFuzz 8 [94) [Ulitoroe [162] Concurency
[TLS-Attacker & [195]] |——{IFuzzer @ [213]) (KernelFuzzer [157]) (Hodor [161]) ~{GRR [211] Driter B 200]
2017
Skyfire @ [217]
GLADE & [30)
DELTA VUncrgl[v 7&] HH<AFL@ 18] (CABFuzz @ 125])
AFLGo @ [36] Kernel
2018
g]
Fawkayo B 3 S—
, (Chopper & [210)]
2019
7 QU QSYM & [230]
{CodeAicherist B [100]) NAUTILUS & [22] -{quFuu 8 [239]

Network File Kernel Concurrency Kernel

Black-box Grey-Dox White-box

THE BACKSTORY

fuzzer

tests a program on many inputs

THE BACKSTORY

mutational fuzzer

produce inputs by modify existing seed
(corpus)

THE BACKSTORY

coverage guided
mutational fuzzer

instrument the program to inform
selection/mutation

IN THE WILD: AFL

american fuzzy lop 0.47b (readpng)

process timing —M8M8M ————————————————————— overall results
run time : 0 days, O hrs, 4 min, 43 sec cycles done : 0

Tast new path : 0 days, 0 hrs, 0 min, 26 sec total paths : 195
last uniq crash : none seen yet uniq crashes : 0
Tast uniq hang : 0 days, O hrs, 1 min, 51 sec uniq hangs : 1

— cycle progress —— ———————————— map coverage —
now processing : 38 (19.49%) map density : 1217 (7.43%)
paths timed out : 0 (0.00%) count coverage : 2.55 bits/tuple
— stage progress ——————————+— findings in depth
now trying : interest 32/8 favored paths : 128 (65.64%)
stage execs : 0/9990 (0.00%) new edges on : 85 (43.59%)
total execs : 654k total crashes : 0 (0 unique)
exec speed : 2306/sec total hangs : 1 (1 unique)
- fuzzing strategy yields - path geometry
bit flips 88/14.4k, 6/14.4k, 6/14.4k levels : 3
byte flips : 0/1804, 0/1786 1/1750 pending : 178
arithmetics : 31/126k. 3/4S.Gk. 1/17.8k pend fav : 114
known ints : 1/15.8k, 4/65.8k, 6/78.2k imported :
havoc : 34/254k, 0/0 variable :
trim : 2876 B/931 (61.45% gain) latent

$./afl-fuzz -i testcase_dir -o findings_dir ./program

- Itis fast.
- It’s rock solid.
- No tinkering required.

http://Icamtuf.coredump.cx/afl/

IN THE WILD: LIBFUZZER

// fuzz_target.cc
extern "C" int LLVMFuzzerTestOneInput(const uint8 t *Data, size t Size) {

DoSomethingInterestingWithMyAPI(Data, Size);
return O;

“LibFuzzer is an in-process,
coverage-guided, evolutionary
fuzzing engine.”

https://llvm.org/docs/LibFuzzer.html

THE IVORY TOWER

"Designing New Operating parallel fuzzing + better os
Primitives to Improve Fuzzing (fork, fs, shared log)
Performance”

"Full-speed Fuzzing: Reducing Unlracer =
Fuzzing Overhead through afl + lighter instrumentation
Coverage-guided Tracing"

"Coverage-based Greybox AFLFast =
Fuzzing as Markov Chain" afl + better selection
"VUzzer: Application-aware + control and data-flow

Evolutionary Fuzzing”

TARGET MATTERS

“fuzzing performance may vary with the target program, so it is
important to evaluate on a diverse, representative benchmark
suite”

- Evaluating Fuzz Testing , Klees, et al.

Synthetic Bugs in Real Programs
Unknown Bugs in Real Programs

Real Bugs in Real Programs

SYNTHETIC BUGS

LAVA:
Large-scale :
9 Of Bugs and Baselines
Automated
Vulnerabil ity “recently published results on the
Addition LAVA-M synthetic bug dataset are
exciting. However, [...] we need to be
cautious Iin our evaluations and not
G\:/ o rely too much on getting a high score
5 L AVA on a single benchmark”

- Brendan Dolan-Gavitt @moyix

https://github.com/panda-re/lava

http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html

0SS-Fuzz: Continuous Fuzzing for
Open Source Software

+200 fuzz ready

e targets
google/oss-fuzz n ins.io GCS bucket I. f fI
O 3 o A T (libfuzzer, afl)
—) : —— ClusterFuzz
)
1. Write fuzzers T
2. Commit build -
| e standardized
8. Fix bugs \ //)
i L o CONFiguration and
Issue trac ker (monorail)

build process

https://github.com/google/oss-fuzz

REAL BUGS

Fuzzer Test Suite

“a set of fuzzing benchmarks derived from
real-life libraries that have interesting bugs,
hard-to-find code paths, or other challenges for
bug finding”

~20 validated programs
known vulnerabillities, reproducers, and seeds

https://github.com/google/fuzzer-test-suite

HOW TO TIME?

LLVM XRa

ll“ TE-E:JVZC ;lsA i X lLT.7E 3l 600 pg‘ X " 17 75-3‘,&:!', ',IE. . " 1',.'."'54‘ 000 ‘,‘;‘ . .] 17 754..203 u';. . § 17_754‘ 400 p 3. 7 P 117 754,600 ;lEA a ¢ jLT_TE»J. 8500 psA i
main (Did Not Finish)
fuzz_one
common_fuzz_stuff common_fuzz_stuff common_fuzz_stuff
run_target wii... run_target wri... run_target show_stats

“XRay is a function call tracing system which combines
compiler-inserted instrumentation points and a runtime
library that can dynamically enable and disable the
instrumentation”

common_fuzz_stuff
fuzz_one

thread 13301

https://llvm.org/docs/XRay.html

LET'S PUT IT ALL TOGETHER

experiment.yml
options:
engine: [afl, libfuzzer]
asan: [yes, no]
targets:
- harfbuzz
- json

$ python helper.py ./experiment.yml build experiment

Prep Project Artifact Runner Push

Q (v - Q

REPORT CARD

Where do fuzzers spend
their time?

Fuzzers (afl, libfuzzer)
Targets (lava, oss-fuzz, fuzzer-test-suite)
Timing (Ilvm XRay)

Automation (“fuzz ready” containers)

THANK YOU!

Fuzzers are great.
Still a lot of art.

Let’s measure.

https://gitlab.com/royragsdale/fuzzing-measurement/

